Piorr, A., Ravetz, J. & Tosics, I. Peri-urbanisation in Europe: Towards European Policies to Sustain Urban-Rural Futures (University of Copenhagen/Academic Books Life Sciences, 2011).
Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 15, 044015 (2020).
Google Scholar
Ravetz, J., Fertner, C. & Nielsen, T. S. in Peri-urban futures: Scenarios and models for land use change in Europe (eds Kjell Nilsson et al.) 13–44 (Springer, 2013).
Meeus, S. J. & Gulinck, H. Semi-urban areas in landscape research: A review. Living Rev. Landsc. Res. 2, 3 (2008).
Google Scholar
Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 67, 9–26 (2004).
Google Scholar
Lemoine-Rodríguez, R., Inostroza, L. & Zepp, H. The global homogenization of urban form. An assessment of 194 cities across time. Landsc. Urban Plan. 204, 103949 (2020).
Google Scholar
Swanwick, C. & Heritage, S. N. Landscape character assessment: Guidance for England and Scotland. Making sense of place (2002).
Gobster, P. H., Nassauer, J. I., Daniel, T. C. & Fry, G. The shared landscape: what does aesthetics have to do with ecology?. Landscape Ecol. 22, 959–972 (2007).
Google Scholar
Daryanto, A. & Song, Z. A meta-analysis of the relationship between place attachment and pro-environmental behaviour. J. Bus. Res. 123, 208–219 (2021).
Google Scholar
Eisenhauer, B. W., Krannich, R. S. & Blahna, D. J. Attachments to special places on public lands: An analysis of activities, reason for attachments, and community connections. Soc. Nat. Resour. 13, 421–441 (2000).
Google Scholar
Volz, K. G. & Hertwig, R. Emotions and decisions: Beyond conceptual vagueness and the rationality muddle. Perspect. Psychol. Sci. 11, 101–116 (2016).
Google Scholar
Lerner, J. S., Li, Y., Valdesolo, P. & Kassam, K. S. Emotion and decision making. Annu. Rev. Psychol. 66, 799–823 (2015).
Google Scholar
Phelps, E. A., Lempert, K. M. & Sokol-Hessner, P. Emotion and decision making: multiple modulatory neural circuits. Annu. Rev. Neurosci. 37, 263–287 (2014).
Google Scholar
Scannell, L. & Gifford, R. Defining place attachment: A tripartite organizing framework. J. Environ. Psychol. 30, 1–10 (2010).
Google Scholar
Lewicka, M. What makes neighborhood different from home and city? Effects of place scale on place attachment. J. Environ. Psychol. 30, 35–51 (2010).
Google Scholar
Smith, R. & Lane, R. D. Unconscious emotion: A cognitive neuroscientific perspective. Neurosci. Biobehav. Rev. 69, 216–238 (2016).
Google Scholar
Tamietto, M. & De Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709 (2010).
Google Scholar
Zajonc, R. B. Feeling and thinking: Preferences need no inferences. Am. Psychol. 35, 151 (1980).
Google Scholar
McConnell, A. R. & Leibold, J. M. Relations among the implicit association test, discriminatory behavior, and explicit measures of racial attitudes. J. Exp. Soc. Psychol. 37, 435–442 (2001).
Google Scholar
Winkielman, P. & Berridge, K. C. Unconscious emotion. Curr. Dir. Psychol. Sci. 13, 120–123 (2004).
Google Scholar
Lewicka, M. Place attachment: How far have we come in the last 40 years?. J. Environ. Psychol. 31, 207–230 (2011).
Google Scholar
Gifford, R. Environmental psychology matters. Annu. Rev. Psychol. 65, 541–579 (2014).
Google Scholar
Hartig, T., Mitchell, R., Vries, Sd. & Frumkin, H. Nature and Health. Annual Review of Public Health 35, 207–228 (2014).
Google Scholar
Ulrich, R. S. et al. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 11, 201–230 (1991).
Google Scholar
Zhao, H. et al. Assessing crowd management strategies for the 2010 Love Parade disaster using computer simulations and virtual reality. J. R. Soc. Interface 17, 20200116 (2020).
Google Scholar
Hackman, D. A. et al. Neighborhood environments influence emotion and physiological reactivity. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Miller, G. E., Chen, E. & Parker, K. J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychol. Bull. 137, 959 (2011).
Google Scholar
Robinette, J. W., Charles, S. T., Almeida, D. M. & Gruenewald, T. L. Neighborhood features and physiological risk: An examination of allostatic load. Health Place 41, 110–118 (2016).
Google Scholar
Karb, R. A., Elliott, M. R., Dowd, J. B. & Morenoff, J. D. Neighborhood-level stressors, social support, and diurnal patterns of cortisol: The Chicago Community Adult Health Study. Soc. Sci. Med. 75, 1038–1047 (2012).
Google Scholar
Ellis, B. J. & Boyce, W. T. Biological sensitivity to context. Curr. Dir. Psychol. Sci. 17, 183–187 (2008).
Google Scholar
Huang, Q., Yang, M., Jane, H.-A., Li, S. & Bauer, N. Trees, grass, or concrete? The effects of different types of environments on stress reduction. Landsc. Urban Plan. 193, 103654 (2020).
Google Scholar
Twedt, E., Rainey, R. M. & Proffitt, D. R. Designed natural spaces: informal gardens are perceived to be more restorative than formal gardens. Front. Psychol. 7, 88 (2016).
Google Scholar
Knez, I., Ode Sang, Å., Gunnarsson, B. & Hedblom, M. Wellbeing in urban greenery: The role of naturalness and place identity. Front. Psychol. 9, 491 (2018).
Google Scholar
Jiang, B., Chang, C.-Y. & Sullivan, W. C. A dose of nature: Tree cover, stress reduction, and gender differences. Landsc. Urban Plan. 132, 26–36 (2014).
Google Scholar
Xiang, L., Cai, M., Ren, C. & Ng, E. Modeling pedestrian emotion in high-density cities using visual exposure and machine learning: Tracking real-time physiology and psychology in Hong Kong. Build. Environ. 205, 108273 (2021).
Google Scholar
Young, C., Hofmann, M., Frey, D., Moretti, M. & Bauer, N. Psychological restoration in urban gardens related to garden type, biodiversity and garden-related stress. Landsc. Urban Plan. 198, 103777 (2020).
Google Scholar
Tyrväinen, L. et al. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 38, 1–9 (2014).
Google Scholar
Huang, S., Qi, J., Li, W., Dong, J. & van den Bosch, C. K. The contribution to stress recovery and attention restoration potential of exposure to urban green spaces in low-density residential areas. Int. J. Environ. Res. Public Health 18, 8713 (2021).
Google Scholar
Alvarsson, J. J., Wiens, S. & Nilsson, M. E. Stress recovery during exposure to nature sound and environmental noise. Int. J. Environ. Res. Public Health 7, 1036–1046 (2010).
Google Scholar
Loomis, J. M., Blascovich, J. J. & Beall, A. C. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31, 557–564 (1999).
Google Scholar
Blascovich, J. et al. Immersive virtual environment technology as a methodological tool for social psychology. Psychol. Inq. 13, 103–124 (2002).
Google Scholar
Slater, M. & Sanchez-Vives, M. V. Enhancing our lives with immersive virtual reality. Front. Robot. AI 3, 74 (2016).
Google Scholar
Riecke, B. E. & Schulte-Pelkum, J. Immersed in Media 187–235 (Springer, 2015).
Google Scholar
Weibel, R. P. et al. Virtual reality experiments with physiological measures. JoVE J. Vis. Exp. https://doi.org/10.3791/58318 (2018).
Google Scholar
Hedblom, M. et al. Reduction of physiological stress by urban green space in a multisensory virtual experiment. Sci. Rep. 9, 10113 (2019).
Google Scholar
Van Gerven, D. J., Ferguson, T. & Skelton, R. W. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze. Neurobiol. Learn. Mem. 132, 29–39 (2016).
Google Scholar
de Kort, Y. A. W., Meijnders, A. L., Sponselee, A. A. G. & Ijsselsteijn, W. A. What’s wrong with virtual trees? Restoring from stress in a mediated environment. J. Environ. Psychol. 26, 309–320 (2006).
Google Scholar
Grübel, J. et al. Spatial Cognition x 159–176 (Springer, 2016).
Marín-Morales, J., Llinares, C., Guixeres, J. & Alcañiz, M. Emotion Recognition in Immersive Virtual Reality: From Statistics to Affective Computing. Sensors 20, 5163 (2020).
Google Scholar
Prokasy, W. Electrodermal Activity in Psychological Research (Elsevier, 2012).
Braithwaite, J., Watson, D., Jones, R. & Rowe, M. A guide for analysing electrodermal activity & skin conductance responses (SCRs) for psychophysiological experiments. Behavioural Brain Sciences Centre, University of Birmingham: Birmingham, UK (2015).
Critchley, H. D. Electrodermal responses: What happens in the brain. Neuroscientist 8, 132–142 (2002).
Google Scholar
Boucsein, W. Electrodermal Activity (Springer Science & Business Media, 2012).
Google Scholar
Mehrabian, A. & Russell, J. A. An Approach to Environmental Psychology (The MIT Press, 1974).
Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994).
Google Scholar
Arefi, M. Deconstructing Placemaking: Needs, Opportunities, and Assets (Routledge, 2014).
Google Scholar
Williams, D. R., Stewart, W. P. & Kruger, L. E. Place-based conservation: Perspectives from the social sciences (Citeseer, 2013).
Switalski, M. & Grêt-Regamey, A. Operationalising place for land system science. Sustain. Sci. 16, 1–11 (2021).
Google Scholar
Chan, K. M. et al. Levers and leverage points for pathways to sustainability. People Nat. 2, 693–717 (2020).
Google Scholar
Fischer, J. & Riechers, M. A leverage points perspective on sustainability. People and Nature 1, 115–120 (2019).
Google Scholar
McPhearson, T. et al. Radical changes are needed for transformations to a good Anthropocene. NPJ Urban Sustain. 1, 1–13 (2021).
Google Scholar
Liu, Y. & Du, S. Psychological stress level detection based on electrodermal activity. Behav. Brain Res. 341, 50–53 (2018).
Google Scholar
Chan, J., To, H.-P. & Chan, E. Reconsidering social cohesion: Developing a definition and analytical framework for empirical research. Social Indic. Res. 75, 273–302 (2006).
Google Scholar
Tveit, M. S., Ode Sang, Å. & Hagerhall, C. M. Scenic beauty: Visual landscape assessment and human landscape perception. Environ. Psychol. https://doi.org/10.1002/9781119241072.ch5 (2018).
Google Scholar
Cottet, M. et al. Using gaze behavior to gain insights into the impacts of naturalness on city dwellers’ perceptions and valuation of a landscape. J. Environ. Psychol. 60, 9–20 (2018).
Google Scholar
Wartmann, F. M. & Purves, R. S. Investigating sense of place as a cultural ecosystem service in different landscapes through the lens of language. Landsc. Urban Plan. 175, 169–183 (2018).
Google Scholar
Menatti, L., Subiza-Pérez, M., Villalpando-Flores, A., Vozmediano, L. & San Juan, C. Place attachment and identification as predictors of expected landscape restorativeness. J. Environ. Psychol. 63, 36–43 (2019).
Google Scholar
Feldman Barrett, L. & Russell, J. A. Independence and bipolarity in the structure of current affect. J. Pers. Soc. Psychol. 74, 967 (1998).
Google Scholar
Sheppard, S. R. Landscape visualisation and climate change: The potential for influencing perceptions and behaviour. Environ. Sci. Policy 8, 637–654 (2005).
Google Scholar
Zube, E. H., Sell, J. L. & Taylor, J. G. Landscape perception: Research, application and theory. Landsc. Plan. 9, 1–33 (1982).
Google Scholar
Bettiga, D., Lamberti, L. & Noci, G. Do mind and body agree? Unconscious versus conscious arousal in product attitude formation. J. Bus. Res. 75, 108–117 (2017).
Google Scholar
Liu, Q. et al. Relationships between residents’ ratings of place attachment and the restorative potential of natural and urban park settings. Urban For. Urban Green. 62, 127188 (2021).
Google Scholar
Devine-Wright, P. Explaining, “NIMBY” objections to a power line: The role of personal, place attachment and project-related factors. Environ. Behav. 45, 761–781 (2013).
Google Scholar
Salak, B., Lindberg, K., Kienast, F. & Hunziker, M. How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model. Renew. Sustain. Energy Rev. 143, 110896 (2021).
Google Scholar
Qiu, W. et al. Subjective or objective measures of street environment, which are more effective in explaining housing prices?. Landsc. Urban Plan. 221, 104358 (2022).
Google Scholar
Xu, X. et al. Associations between street-view perceptions and housing prices: Subjective vs. objective measures using computer vision and machine learning techniques. Remote Sens. 14, 891 (2022).
Google Scholar
Raymond, C. M., Brown, G. & Weber, D. The measurement of place attachment: Personal, community, and environmental connections. J. Environ. Psychol. 30, 422–434 (2010).
Google Scholar
Bonaiuto, M., Aiello, A., Perugini, M., Bonnes, M. & Ercolani, A. P. Multidimensional perception of residential environment quality and neighbourhood attachment in the urban environment. J. Environ. Psychol. 19, 331–352 (1999).
Google Scholar
Sampson, R. J. Local friendship ties and community attachment in mass society: A multilevel systemic model. Am. Sociol. Rev. 53, 766–779 (1988).
Google Scholar
Taylor, R. B., Gottfredson, S. D. & Brower, S. Attachment to place: Discriminant validity, and impacts of disorder and diversity. Am. J. Community Psychol. 13, 525–542 (1985).
Google Scholar
Hidalgo, M. C. & Hernandez, B. Place attachment: Conceptual and empirical questions. J. Environ. Psychol. 21, 273–281 (2001).
Google Scholar
Rollero, C. & De Piccoli, N. Place attachment, identification and environment perception: An empirical study. J. Environ. Psychol. 30, 198–205 (2010).
Google Scholar
Cho, S., Crenshaw, K. W. & McCall, L. Toward a field of intersectionality studies: Theory, applications, and praxis. Signs 38, 785–810 (2013).
Google Scholar
Florida, R. The Great Reset: How New Ways of Living and Working Drive Post-Crash Prosperity (Random House Canada, 2010).
Syme, G. J., Beven, C. E. & Sumner, N. R. Motivation for reported involvement in local wetland preservation: The roles of knowledge, disposition, problem assessment, and arousal. Environ. Behav. 25, 586–606 (1993).
Google Scholar
Buchecker, M. Spaces, Spatiality and Technology 79–96 (Springer, 2005).
Google Scholar
Lazarus, R. S. Cognition and motivation in emotion. Am. Psychol. 46, 352 (1991).
Google Scholar
Gross, J. J. The future’s so bright I gotta wear shades. Emotion Rev. 2, 212–216 (2010).
Google Scholar
Fischer, J., Wissen Hayek, U., Galleguillos Torres, M., Weibel, B. & Grêt-Regamey, A. DLA’20, 21th International Conference on Digital Landscape Architecture 295–304 (Wichmann Verlag, 2020).
Ogdon, D. C. HoloLens and VIVE pro: Virtual reality headsets. J. Med. Libr. Assoc. 107, 118 (2019).
Google Scholar
Shobitha, M. & Agarwal, J. L. Electroencephalographic pattern and galvanic skin resistance levels during short duration of “aum” mantra chanting. Int. J. Physiol. 1, 68–72 (2013).
Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (University of Florida, 2008).
Leiner, D., Fahr, A. & Früh, H. EDA positive change: A simple algorithm for electrodermal activity to measure general audience arousal during media exposure. Commun. Methods Meas. 6, 237–250 (2012).
Google Scholar
Bonaiuto, M., Fornara, F., Ariccio, S., GanucciCancellieri, U. & Rahimi, L. Perceived Residential Environment Quality Indicators (PREQIs) relevance for UN-HABITAT City Prosperity Index (CPI). Habitat Int. 45, 53–63 (2015).
Google Scholar
Conover, W. J. Practical Nonparametric Statistics Vol. 350 (Wiley, 1999).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at http://arXiv.org/:1406.5823 (2014).
Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).
Google Scholar
Bruce, P., Bruce, A. & Gedeck, P. Practical Statistics for Data Scientists: 50+ Essential Concepts using R and Python (O’Reilly Media, 2020).
Spearman, C. The Proof and Measurement of Association Between Two Things (Appleton-Century-Crofts, 1961).
Google Scholar
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 271–300 (Springer, 2002).
Google Scholar
Vittinghoff, E., Glidden, D. V., Shiboski, S. C. & McCulloch, C. E. Regression methods in biostatistics: Linear, logistic, survival, and repeated measures models. J. Int. Biom. Soc. https://doi.org/10.1111/j.1541-0420.2006.00596_3.x (2006).
Google Scholar