Brain Wealthy
    What's Hot

    Leigh-Anne Pinnock shares emotional post about embarking on her solo career

    February 2, 2023

    Review: Never Sleep Again: The Elm Street Legacy – Blu-ray

    February 2, 2023

    Gardasil Injection Lawsuit Claims HPV Vaccine Caused Neurological and Autonomic Dysfunction

    February 2, 2023
    Facebook Twitter Instagram
    Facebook Twitter Instagram
    Brain Wealthy
    • Home
    • Anxiety

      FSU psychologist receives $3.7 million grant to combat anxiety in seniors with Alzheimer’s and cognitive impairment

      February 2, 2023

      How anxiety came to dominate the big business of medical marijuana cards in Pa.

      February 2, 2023

      How to Reduce Anxiety in Stressful Situations

      February 2, 2023

      The cat in boots The last wish taught me about anxiety

      February 2, 2023

      Inseparable cat trio with ‘separation anxiety brothers’ find new home

      February 2, 2023
    • Emotion

      Leigh-Anne Pinnock shares emotional post about embarking on her solo career

      February 2, 2023

      Ontario paramedic emotional during last radio call

      February 2, 2023

      A Pianist Faces Death and Recorded Music of Unspeakable Emotions

      February 2, 2023

      Return of home post linking Gichaara to ancestors is emotional for north coast nation

      February 2, 2023

      Mother of two sues New York school district for ‘mental distress’ caused by mask enforcement

      February 2, 2023
    • Neurology

      Gardasil Injection Lawsuit Claims HPV Vaccine Caused Neurological and Autonomic Dysfunction

      February 2, 2023

      REGENXBIO’s Duchenne Therapy RGX-202 Clinical Trial Begins Patient Recruitment

      February 2, 2023

      Aducanumab for the treatment of Alzheimer’s disease

      February 2, 2023

      Potential for Effective Comparative Studies and Treatment Approval in Epilepsy Care: Anup Patel, MD

      February 2, 2023

      Head injury does not predict memory impairment in NFL retirees, UT Southwestern study shows: Newsroom

      February 2, 2023
    • Sleep

      Review: Never Sleep Again: The Elm Street Legacy – Blu-ray

      February 2, 2023

      Get a better night’s sleep with better pillows from The Pillow Bar in Dallas

      February 2, 2023

      Is it okay to sleep with a necklace on?

      February 2, 2023

      Does tart cherry juice improve sleep?

      February 2, 2023

      Social Jet Lag, Sleep Chronotypes, and Why We Gotta Close Our Eyes and Embrace It

      February 2, 2023
    • Brain Research

      spark!Talk – video available online

      February 2, 2023

      Studies have found that obesity-related neurodegeneration mimics Alzheimer’s disease.newsroom

      February 2, 2023

      The Brain Observatory: New Museum to Participate in Museum Month

      February 1, 2023

      who wants to live forever

      February 1, 2023

      UK company makes surprise forays

      February 1, 2023
    • Brain Wealth
      1. Mental Health
      2. View All

      Research project applies a global lens to student mental health

      February 2, 2023

      DC Metro shooting suspect undergoes mental health evaluation after rampage

      February 2, 2023

      Gov. Ho-Chol unveils details of $1 billion plan to overhaul New York State’s mental health care continuum

      February 2, 2023

      Boston, we have a problem: data on mental health and practice come in

      February 2, 2023

      Research project applies a global lens to student mental health

      February 2, 2023

      DC Metro shooting suspect undergoes mental health evaluation after rampage

      February 2, 2023

      Gov. Ho-Chol unveils details of $1 billion plan to overhaul New York State’s mental health care continuum

      February 2, 2023

      Boston, we have a problem: data on mental health and practice come in

      February 2, 2023
    Brain Wealthy
    Home»Neurology»Facioscapulohumeral muscular dystrophy: the road to targeted therapies
    Neurology

    Facioscapulohumeral muscular dystrophy: the road to targeted therapies

    brainwealthy_vws1exBy brainwealthy_vws1exJanuary 10, 2023No Comments33 Mins Read
    Facebook Twitter LinkedIn Telegram Pinterest Tumblr Reddit WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Deenen, J. C. et al. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology 83, 1056–1059 (2014).

    Article 

    Google Scholar 

  • Lemmers, R. J. et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329, 1650–1653 (2010).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat. Genet. 44, 1370–1374 (2012).

    Article 
    CAS 

    Google Scholar 

  • Tawil, R. et al. Clinical trial preparedness in facioscapulohumeral muscular dystrophy: clinical, tissue, and imaging outcome measures 29–30 May 2015, Rochester, New York. Neuromuscul. Disord. 26, 181–186 (2016).

    Article 

    Google Scholar 

  • Mul, K. et al. What’s in a name? The clinical features of facioscapulohumeral muscular dystrophy. Pract. Neurol. 16, 201–207 (2016).

    Article 

    Google Scholar 

  • Tawil, R. & Van Der Maarel, S. M. Facioscapulohumeral muscular dystrophy. Muscle Nerve 34, 1–15 (2006).

    Article 
    CAS 

    Google Scholar 

  • Statland, J. M. & Tawil, R. Risk of functional impairment in facioscapulohumeral muscular dystrophy. Muscle Nerve 49, 520–527 (2014).

    Article 

    Google Scholar 

  • Lemmers, R. J. et al. Somatic mosaicism in FSHD often goes undetected. Ann. Neurol. 55, 845–850 (2004).

    Article 
    CAS 

    Google Scholar 

  • Tonini, M. M. et al. Asymptomatic carriers and gender differences in facioscapulohumeral muscular dystrophy (FSHD). Neuromuscul. Disord. 14, 33–38 (2004).

    Article 
    CAS 

    Google Scholar 

  • Ricci, G. et al. Large scale genotype–phenotype analyses indicate that novel prognostic tools are required for families with facioscapulohumeral muscular dystrophy. Brain https://doi.org/10.1093/brain/awt226 (2013).

    Article 

    Google Scholar 

  • Salort-Campana, E. et al. Low penetrance in facioscapulohumeral muscular dystrophy type 1 with large pathological D4Z4 alleles: a cross-sectional multicenter study. Orphanet J. Rare Dis. 10, 2 (2015).

    Article 

    Google Scholar 

  • Wohlgemuth, M. et al. A family-based study into penetrance in facioscapulohumeral muscular dystrophy type 1. Neurology 91, e444–e454 (2018).

    Article 

    Google Scholar 

  • Zatz, M. et al. The facioscapulohumeral muscular dystrophy (FSHD1) gene affects males more severely and more frequently than females. Am. J. Med. Genet. 77, 155–161 (1998).

    Article 
    CAS 

    Google Scholar 

  • van der Maarel, S. M. et al. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am. J. Hum. Genet. 66, 26–35 (2000).

    Article 

    Google Scholar 

  • Sakellariou, P. et al. Mutation spectrum and phenotypic manifestation in FSHD Greek patients. Neuromuscul. Disord. 22, 339–349 (2012).

    Article 
    CAS 

    Google Scholar 

  • Mul, K. et al. Phenotype–genotype relations in facioscapulohumeral muscular dystrophy type 1. Clin. Genet. 94, 521–527 (2018).

    Article 
    CAS 

    Google Scholar 

  • Monforte, M. et al. Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging. J. Cachexia Sarcopenia Muscle 10, 1258–1265 (2019).

    Article 

    Google Scholar 

  • Katz, N. K. et al. Predictors of functional outcomes in patients with facioscapulohumeral muscular dystrophy. Brain 144, 3451–3460 (2021).

    Article 

    Google Scholar 

  • Teveroni, E. et al. Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity. J. Clin. Invest. 127, 1531–1545 (2017).

    Article 

    Google Scholar 

  • Mul, K., Horlings, C. G. C., Voermans, N. C., Schreuder, T. H. A. & van Engelen, B. G. M. Lifetime endogenous estrogen exposure and disease severity in female patients with facioscapulohumeral muscular dystrophy. Neuromuscul. Disord. 28, 508–511 (2018).

    Article 

    Google Scholar 

  • Goselink, R. J. M. et al. Early onset as a marker for disease severity in facioscapulohumeral muscular dystrophy. Neurology 92, e378–e385 (2019).

    Article 

    Google Scholar 

  • Klinge, L. et al. Severe phenotype in infantile facioscapulohumeral muscular dystrophy. Neuromuscul. Disord. 16, 553–558 (2006).

    Article 

    Google Scholar 

  • Brouwer, O. F., Padberg, G. W., Wijmenga, C. & Frants, R. R. Facioscapulohumeral muscular dystrophy in early childhood. Arch. Neurol. 51, 387–394 (1994).

    Article 
    CAS 

    Google Scholar 

  • Goselink, R. J. M. et al. Early onset facioscapulohumeral dystrophy — a systematic review using individual patient data. Neuromuscul. Disord. 27, 1077–1083 (2017).

    Article 

    Google Scholar 

  • Tawil, R. et al. Evidence-based guideline summary: evaluation, diagnosis, and management of facioscapulohumeral muscular dystrophy: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular and Electrodiagnostic Medicine. Neurology 85, 357–364 (2015).

    Article 

    Google Scholar 

  • Aprile, I. et al. Balance and walking involvement in facioscapulohumeral dystrophy: a pilot study on the effects of custom lower limb orthoses. Eur. J. Phys. Rehab. Med. 49, 169–178 (2013).

    CAS 

    Google Scholar 

  • Voet, N. et al. Both aerobic exercise and cognitive-behavioral therapy reduce chronic fatigue in FSHD: an RCT. Neurology 83, 1914–1922 (2014).

    Article 
    CAS 

    Google Scholar 

  • Andersen, G., Prahm, K. P., Dahlqvist, J. R., Citirak, G. & Vissing, J. Aerobic training and postexercise protein in facioscapulohumeral muscular dystrophy: RCT study. Neurology 85, 396–403 (2015).

    Article 
    CAS 

    Google Scholar 

  • Andersen, G., Heje, K., Buch, A. E. & Vissing, J. High-intensity interval training in facioscapulohumeral muscular dystrophy type 1: a randomized clinical trial. J. Neurol. 264, 1099–1106 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wijmenga, C. et al. Location of facioscapulohumeral muscular dystrophy gene on chromosome 4. Lancet 336, 651–653 (1990).

    Article 
    CAS 

    Google Scholar 

  • Wijmenga, C. et al. Mapping of facioscapulohumeral muscular dystrophy gene to chromosome 4q35-qter by multipoint linkage analysis and in situ hybridization. Genomics 9, 570–575 (1991).

    Article 
    CAS 

    Google Scholar 

  • Wijmenga, C. et al. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat. Genet. 2, 26–30 (1992).

    Article 
    CAS 

    Google Scholar 

  • van Deutekom, J. C. et al. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum. Mol. Genet. 2, 2037–2042 (1993).

    Article 

    Google Scholar 

  • Hewitt, J. E. et al. Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystrophy. Hum. Mol. Genet. 3, 1287–1295 (1994).

    Article 
    CAS 

    Google Scholar 

  • van Deutekom, J. C. et al. Identification of the first gene (FRG1) from the FSHD region on human chromosome 4q35. Hum. Mol. Genet. 5, 581–590 (1996).

    Article 

    Google Scholar 

  • van Geel, M. et al. The FSHD region on human chromosome 4q35 contains potential coding regions among pseudogenes and a high density of repeat elements. Genomics 61, 55–65 (1999).

    Article 

    Google Scholar 

  • van Geel, M. et al. Identification of a novel β-tubulin subfamily with one member (TUBB4Q) located near the telomere of chromosome region 4q35. Cytogenet. Cell Genet. 88, 316–321 (2000).

    Article 

    Google Scholar 

  • Rijkers, T. et al. FRG2, an FSHD candidate gene, is transcriptionally upregulated in differentiating primary myoblast cultures of FSHD patients. J. Med. Genet. 41, 826–836 (2004).

    Article 
    CAS 

    Google Scholar 

  • Tupler, R. et al. Monosomy of distal 4q does not cause facioscapulohumeral muscular dystrophy. J. Med. Genet. 33, 366–370 (1996).

    Article 
    CAS 

    Google Scholar 

  • Gabellini, D., Green, M. R. & Tupler, R. Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110, 339–348 (2002).

    Article 
    CAS 

    Google Scholar 

  • Bodega, B. et al. Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation. BMC Biol. 7, 41 (2009).

    Article 

    Google Scholar 

  • Klooster, R. et al. Comprehensive expression analysis of FSHD candidate genes at the mRNA and protein level. Eur. J. Hum. Genet. 17, 1615–1624 (2009).

    Article 
    CAS 

    Google Scholar 

  • Jiang, G. et al. Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Hum. Mol. Genet. 12, 2909–2921 (2003).

    Article 
    CAS 

    Google Scholar 

  • Cheli, S. et al. Expression profiling of FSHD-1 and FSHD-2 cells during myogenic differentiation evidences common and distinctive gene dysregulation patterns. PLoS ONE 6, e20966 (2011).

    Article 
    CAS 

    Google Scholar 

  • Thijssen, P. E. et al. DUX4 promotes transcription of FRG2 by directly activating its promoter in facioscapulohumeral muscular dystrophy. Skelet. Muscle 4, 19 (2014).

    Article 

    Google Scholar 

  • Ferri, G., Huichalaf, C. H., Caccia, R. & Gabellini, D. Direct interplay between two candidate genes in FSHD muscular dystrophy. Hum. Mol. Genet. 24, 1256–1266 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. et al. Chromosome 10q-linked FSHD identifies DUX4 as principal disease gene. J. Med. Genet. 59, 180–188 (2021).

    Article 

    Google Scholar 

  • Gabriels, J. et al. Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene 236, 25–32 (1999).

    Article 
    CAS 

    Google Scholar 

  • van Geel, M. et al. Genomic analysis of human chromosome 10q and 4q telomeres suggests a common origin. Genomics 79, 210–217 (2002).

    Article 

    Google Scholar 

  • Lemmers, R. J. et al. Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat. Genet. 32, 235–236 (2002).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. et al. Contractions of D4Z4 on 4qB subtelomeres do not cause facioscapulohumeral muscular dystrophy. Am. J. Hum. Genet. 75, 1124–1130 (2004).

    Article 
    CAS 

    Google Scholar 

  • Dixit, M. et al. DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc. Natl Acad. Sci. USA 104, 18157–18162 (2007).

    Article 
    CAS 

    Google Scholar 

  • Snider, L. et al. RNA transcripts, miRNA-sized fragments and proteins produced from D4Z4 units: new candidates for the pathophysiology of facioscapulohumeral dystrophy. Hum. Mol. Genet. 18, 2414–2430 (2009).

    Article 
    CAS 

    Google Scholar 

  • Bakker, E. et al. The FSHD-linked locus D4F104S1 (p13E-11) on 4q35 has a homologue on 10qter. Muscle Nerve. 2, S39–S44 (1995).

    Article 
    CAS 

    Google Scholar 

  • Deidda, G. et al. Physical mapping evidence for a duplicated region on chromosome 10qter showing high homology with the facioscapulohumeral muscular dystrophy locus on chromosome 4qter. Eur. J. Hum. Genet. 3, 155–167 (1995).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. et al. Worldwide population analysis of the 4q and 10q subtelomeres identifies only four discrete interchromosomal sequence transfers in human evolution. Am. J. Hum. Genet. 86, 364–377 (2010).

    Article 
    CAS 

    Google Scholar 

  • Jones, T. I. et al. Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Hum. Mol. Genet. 21, 4419–4430 (2012).

    Article 
    CAS 

    Google Scholar 

  • Snider, L. et al. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet. 6, e1001181 (2010).

    Article 

    Google Scholar 

  • Huichalaf, C., Micheloni, S., Ferri, G., Caccia, R. & Gabellini, D. DNA methylation analysis of the macrosatellite repeat associated with FSHD muscular dystrophy at single nucleotide level. PLoS ONE 9, e115278 (2014).

    Article 

    Google Scholar 

  • Das, S. & Chadwick, B. P. Influence of repressive histone and DNA methylation upon D4Z4 transcription in non-myogenic cells. PLoS ONE 11, e0160022 (2016).

    Article 

    Google Scholar 

  • Zeng, W. et al. Specific loss of histone H3 lysine 9 trimethylation and HP1γ/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 5, e1000559 (2009).

    Article 

    Google Scholar 

  • Boros, J., Arnoult, N., Stroobant, V., Collet, J. F. & Decottignies, A. Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1α at chromatin. Mol. Cell Biol. 34, 3662–3674 (2014).

    Article 

    Google Scholar 

  • Chen, K. et al. Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Proc. Natl Acad. Sci. USA 112, E3535–E3544 (2015).

    CAS 

    Google Scholar 

  • Campbell, A. E. et al. NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. eLife 7, e31023 (2018).

    Article 

    Google Scholar 

  • Casa, V. et al. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy. Hum. Mol. Genet. 26, 753–767 (2017).

    CAS 

    Google Scholar 

  • Haynes, P., Bomsztyk, K. & Miller, D. G. Sporadic DUX4 expression in FSHD myocytes is associated with incomplete repression by the PRC2 complex and gain of H3K9 acetylation on the contracted D4Z4 allele. Epigenet. Chromatin 11, 47 (2018).

    Article 

    Google Scholar 

  • Sacconi, S. et al. FSHD1 and FSHD2 form a disease continuum. Neurology 92, e2273–e2285 (2019).

    Article 

    Google Scholar 

  • van Overveld, P. G. et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat. Genet. 35, 315–317 (2003).

    Article 

    Google Scholar 

  • Calandra, P. et al. Allele-specific DNA hypomethylation characterises FSHD1 and FSHD2. J. Med. Genet. 53, 348–355 (2016).

    Article 
    CAS 

    Google Scholar 

  • Rieken, A., Bossler, A. D., Mathews, K. D. & Moore, S. A. CLIA Laboratory testing for facioscapulohumeral dystrophy: a retrospective analysis. Neurology 96, e1054–e1062 (2021).

    CAS 

    Google Scholar 

  • Lemmers, R. J. et al. Hemizygosity for SMCHD1 in facioscapulohumeral muscular dystrophy type 2: consequences for 18p deletion syndrome. Hum. Mutat. 36, 679–683 (2015).

    Article 
    CAS 

    Google Scholar 

  • van den Boogaard, M. L. et al. Mutations in DNMT3B modify epigenetic repression of the D4Z4 repeat and the penetrance of facioscapulohumeral dystrophy. Am. J. Hum. Genet. 98, 1020–1029 (2016).

    Article 

    Google Scholar 

  • Hamanaka, K. et al. Homozygous nonsense variant in LRIF1 associated with facioscapulohumeral muscular dystrophy. Neurology 94, e2441–e2447 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sacconi, S. et al. The FSHD2 gene SMCHD1 is a modifier of disease severity in families affected by FSHD1. Am. J. Hum. Genet. 93, 744–751 (2013).

    Article 
    CAS 

    Google Scholar 

  • van Deutekom, J. C. et al. Evidence for subtelomeric exchange of 3.3 kb tandemly repeated units between chromosomes 4q35 and 10q26: implications for genetic counselling and etiology of FSHD1. Hum. Mol. Genet. 5, 1997–2003 (1996).

    Article 

    Google Scholar 

  • Nguyen, K. et al. Deciphering the complexity of the 4q and 10q subtelomeres by molecular combing in healthy individuals and patients with facioscapulohumeral dystrophy. J. Med. Genet. 56, 590–601 (2019).

    Article 
    CAS 

    Google Scholar 

  • Goossens, R. et al. Intronic SMCHD1 variants in FSHD: testing the potential for CRISPR-Cas9 genome editing. J. Med. Genet. 56, 828–837 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. L. F. et al. Cis D4Z4 repeat duplications associated with facioscapulohumeral muscular dystrophy type 2. Hum. Mol. Genet. 27, 3488–3497 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. et al. High-resolution breakpoint junction mapping of proximally extended D4Z4 deletions in FSHD1 reveals evidence for a founder effect. Hum. Mol. Genet. 31, 748–760 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. et al. D4F104S1 deletion in facioscapulohumeral muscular dystrophy: phenotype, size, and detection. Neurology 61, 178–183 (2003).

    Article 
    CAS 

    Google Scholar 

  • van den Boogaard, M. L. et al. Double SMCHD1 variants in FSHD2: the synergistic effect of two SMCHD1 variants on D4Z4 hypomethylation and disease penetrance in FSHD2. Eur. J. Hum. Genet. 24, 78–85 (2016).

    Article 

    Google Scholar 

  • Mocciaro, E., Runfola, V., Ghezzi, P., Pannese, M. & Gabellini, D. DUX4 role in normal physiology and in FSHD muscular dystrophy. Cells https://doi.org/10.3390/cells10123322 (2021).

    Article 

    Google Scholar 

  • Geng, L. N. et al. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev. Cell 22, 38–51 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).

    Article 
    CAS 

    Google Scholar 

  • De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–994 (2017).

    Article 

    Google Scholar 

  • Choi, S. H. et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res. 44, 5161–5173 (2016).

    Article 
    CAS 

    Google Scholar 

  • Resnick, R. et al. DUX4-induced histone variants H3.X and H3.Y mark DUX4 target genes for expression. Cell Rep. 29, 1812–1820.e5 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gannon, O. M., Merida de Long, L. & Saunders, N. A. DUX4 is derepressed in late-differentiating keratinocytes in conjunction with loss of H3K9me3 epigenetic repression. J. Invest. Dermatol. 136, 1299–1302 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kowaljow, V. et al. The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul. Disord. 17, 611–623 (2007).

    Article 

    Google Scholar 

  • Knopp, P. et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. J. Cell Sci. 129, 3816–3831 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wallace, L. M. et al. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann. Neurol. 69, 540–552 (2011).

    Article 
    CAS 

    Google Scholar 

  • Lek, A. et al. Applying genome-wide CRISPR–Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay0271 (2020).

    Article 

    Google Scholar 

  • Bosnakovski, D. et al. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. Dis. Model. Mech. 10, 1211–1216 (2017).

    CAS 

    Google Scholar 

  • Shadle, S. C. et al. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genet. 13, e1006658 (2017).

    Article 

    Google Scholar 

  • Grow, E. J. et al. p53 convergently activates Dux/DUX4 in embryonic stem cells and in facioscapulohumeral muscular dystrophy cell models. Nat. Genet. 53, 1207–1220 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article 
    CAS 

    Google Scholar 

  • Winokur, S. T. et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum. Mol. Genet. 12, 2895–2907 (2003).

    Article 
    CAS 

    Google Scholar 

  • Sasaki-Honda, M. et al. A patient-derived iPSC model revealed oxidative stress increases facioscapulohumeral muscular dystrophy-causative DUX4. Hum. Mol. Genet. 27, 4024–4035 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tsumagari, K. et al. Gene expression during normal and FSHD myogenesis. BMC Med. Genom. 4, 67 (2011).

    Article 
    CAS 

    Google Scholar 

  • Jagannathan, S., Ogata, Y., Gafken, P. R., Tapscott, S. J. & Bradley, R. K. Quantitative proteomics reveals key roles for post-transcriptional gene regulation in the molecular pathology of facioscapulohumeral muscular dystrophy. eLife 8, e41740 (2019).

    Article 

    Google Scholar 

  • Beermann, M. L., Homma, S. & Miller, J. B. Proximity ligation assay to detect DUX4 protein in FSHD1 muscle: a pilot study. BMC Res. Notes 15, 163 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tassin, A. et al. DUX4 expression in FSHD muscle cells: how could such a rare protein cause a myopathy. J. Cell. Mol. Med. 17, 76–89 (2013).

    Article 
    CAS 

    Google Scholar 

  • Rickard, A. M., Petek, L. M. & Miller, D. G. Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Hum. Mol. Genet. 24, 5901–5914 (2015).

    Article 
    CAS 

    Google Scholar 

  • Yao, Z. et al. DUX4-induced gene expression is the major molecular signature in FSHD skeletal muscle. Hum. Mol. Genet. 23, 5342–5352 (2014).

    Article 
    CAS 

    Google Scholar 

  • Jagannathan, S. et al. Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells. Hum. Mol. Genet. 25, 4419–4431 (2016).

    CAS 

    Google Scholar 

  • Heuvel, A. V. D. et al. Single-cell RNA-sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Hum. Mol. Genet. 28, 1064–1075 (2018).

    Article 

    Google Scholar 

  • Jiang, S. et al. Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei. PLoS Genet 16, e1008754 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nikolic, A. et al. Clinical expression of facioscapulohumeral muscular dystrophy in carriers of 1-3 D4Z4 reduced alleles: experience of the FSHD Italian National Registry. BMJ Open 6, e007798 (2016).

    Article 

    Google Scholar 

  • Statland, J. M. et al. Milder phenotype in facioscapulohumeral dystrophy with 7–10 residual D4Z4 repeats. Neurology 85, 2147–2150 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. et al. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2. Hum. Mol. Genet. 24, 659–669 (2014).

    Article 

    Google Scholar 

  • Scionti, I. et al. Large-scale population analysis challenges the current criteria for the molecular diagnosis of fascioscapulohumeral muscular dystrophy. Am. J. Hum. Genet. 90, 628–635 (2012).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. et al. Specific sequence variations within the 4q35 region are associated with facioscapulohumeral muscular dystrophy. Am. J. Hum. Genet. 81, 884–894 (2007).

    Article 
    CAS 

    Google Scholar 

  • Nikolic, A. et al. Interpretation of the epigenetic signature of facioscapulohumeral muscular dystrophy in light of genotype–phenotype studies. Int. J. Mol. Sci. 21, 2635 (2020).

    Article 
    CAS 

    Google Scholar 

  • Salsi, V., Magdinier, F. & Tupler, R. Does DNA methylation matter in FSHD. Genes 11, 258 (2020).

    Article 
    CAS 

    Google Scholar 

  • van Overveld, P. G. et al. Variable hypomethylation of D4Z4 in facioscapulohumeral muscular dystrophy. Ann. Neurol. 58, 569–576 (2005).

    Article 

    Google Scholar 

  • de Greef, J. C. et al. Hypomethylation is restricted to the D4Z4 repeat array in phenotypic FSHD. Neurology 69, 1018–1026 (2007).

    Article 

    Google Scholar 

  • de Greef, J. C. et al. Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum. Mutat. 30, 1449–1459 (2009).

    Article 

    Google Scholar 

  • Gaillard, M. C. et al. Differential DNA methylation of the D4Z4 repeat in patients with FSHD and asymptomatic carriers. Neurology 83, 733–742 (2014).

    Article 
    CAS 

    Google Scholar 

  • Larsen, M. et al. Diagnostic approach for FSHD revisited: SMCHD1 mutations cause FSHD2 and act as modifiers of disease severity in FSHD1. Eur. J. Hum. Genet. 23, 808–816 (2014).

    Article 

    Google Scholar 

  • Jones, T. I. et al. Individual epigenetic status of the pathogenic D4Z4 macrosatellite correlates with disease in facioscapulohumeral muscular dystrophy. Clin. Epigenet. 7, 37 (2015).

    Article 

    Google Scholar 

  • Roche, S. et al. Methylation hotspots evidenced by deep sequencing in patients with facioscapulohumeral dystrophy and mosaicism. Neurol. Genet. 5, e372–e372 (2019).

    Article 
    CAS 

    Google Scholar 

  • Jones, T. I. et al. Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing. Clin. Epigenet. 6, 23 (2014).

    Article 

    Google Scholar 

  • Erdmann, H. et al. Methylation of the 4q35 D4Z4 repeat defines disease status in facioscapulohumeral muscular dystrophy. Brain https://doi.org/10.1093/brain/awac336 (2022).

    Article 

    Google Scholar 

  • Mason, A. G. et al. SMCHD1 regulates a limited set of gene clusters on autosomal chromosomes. Skelet. Muscle 7, 12 (2017).

    Article 

    Google Scholar 

  • Hartweck, L. M. et al. A focal domain of extreme demethylation within D4Z4 in FSHD2. Neurology 80, 392–399 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. L. F. et al. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2. Hum. Mol. Genet. 24, 659–669 (2015).

    Article 
    CAS 

    Google Scholar 

  • Balog, J. et al. Increased DUX4 expression during muscle differentiation correlates with decreased SMCHD1 protein levels at D4Z4. Epigenetics 10, 1133–1142 (2015).

    Article 

    Google Scholar 

  • Balog, J. et al. Monosomy 18p is a risk factor for facioscapulohumeral dystrophy. J. Med. Genet. 55, 469–478 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gordon, C. T. et al. De novo mutations in SMCHD1 cause bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat. Genet. 49, 249–255 (2017).

    Article 
    CAS 

    Google Scholar 

  • Shaw, N. D. et al. SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and bosma arhinia microphthalmia syndrome. Nat. Genet. 49, 238–248 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kinjo, K. et al. Rare variant of the epigenetic regulator SMCHD1 in a patient with pituitary hormone deficiency. Sci. Rep. 10, 10985 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lemmers, R. J. L. F. et al. SMCHD1 mutation spectrum for facioscapulohumeral muscular dystrophy type 2 (FSHD2) and bosma arhinia microphthalmia syndrome (BAMS) reveals disease-specific localisation of variants in the ATPase domain. J. Med. Genet. 56, 693–700 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gurzau, A. D. et al. FSHD2- and BAMS-associated mutations confer opposing effects on SMCHD1 function. J. Biol. Chem. 293, 9841–9853 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dion, C. et al. SMCHD1 is involved in de novo methylation of the DUX4-encoding D4Z4 macrosatellite. Nucleic Acids Res 47, 2822–2839 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mul, K. et al. FSHD type 2 and bosma arhinia microphthalmia syndrome: two faces of the same mutation. Neurology 91, e562–e570 (2018).

    Article 

    Google Scholar 

  • Mohassel, P. et al. Cross-sectional neuromuscular phenotyping study of patients with arhinia with SMCHD1 variants. Neurology 98, e1384–e1396 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA 96, 14412–14417 (1999).

    Article 
    CAS 

    Google Scholar 

  • Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article 
    CAS 

    Google Scholar 

  • Gendrel, A. V. et al. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev. Cell 23, 265–279 (2012).

    Article 
    CAS 

    Google Scholar 

  • Thijssen, P. E. et al. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat. Commun. 6, 7870 (2015).

    Article 
    CAS 

    Google Scholar 

  • Jeanpierre, M. et al. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2, 731–735 (1993).

    Article 
    CAS 

    Google Scholar 

  • Kondo, T. et al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum. Mol. Genet. 9, 597–604 (2000).

    Article 
    CAS 

    Google Scholar 

  • Nozawa, R. S. et al. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1–HBiX1 pathway. Nat. Struct. Mol. Biol. 20, 566–573 (2013).

    Article 
    CAS 

    Google Scholar 

  • Brideau, N. J. et al. Independent mechanisms target SMCHD1 to H3K9me3-modified chromatin and the inactive X chromosome. Mol. Cell Biol. 35, 4053–4068 (2015).

    Article 
    CAS 

    Google Scholar 

  • Balog, J. et al. Correlation analysis of clinical parameters with epigenetic modifications in the DUX4 promoter in FSHD. Epigenetics 7, 579–584 (2012).

    Article 
    CAS 

    Google Scholar 

  • Cabianca, D. S. et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149, 819–831 (2012).

    Article 
    CAS 

    Google Scholar 

  • Himeda, C. L. et al. Identification of epigenetic regulators of DUX4-fl for targeted therapy of facioscapulohumeral muscular dystrophy. Mol. Ther. 26, 1797–1807 (2018).

    Article 
    CAS 

    Google Scholar 

  • Olsen, D. B., Ørngreen, M. C. & Vissing, J. Aerobic training improves exercise performance in facioscapulohumeral muscular dystrophy. Neurology 64, 1064–1066 (2005).

    Article 

    Google Scholar 

  • Janssen, B., Voet, N., Geurts, A., van Engelen, B. & Heerschap, A. Quantitative MRI reveals decelerated fatty infiltration in muscles of active FSHD patients. Neurology 86, 1700–1707 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. H. et al. MRI-informed muscle biopsies correlate MRI with pathology and DUX4 target gene expression in FSHD. Hum. Mol. Genet. 28, 476–486 (2019).

    Article 

    Google Scholar 

  • Dahlqvist, J. R. et al. Evaluation of inflammatory lesions over 2 years in facioscapulohumeral muscular dystrophy. Neurology 95, e1211–e1221 (2020).

    Article 
    CAS 

    Google Scholar 

  • van den Heuvel, A. et al. Facioscapulohumeral dystrophy transcriptome signatures correlate with different stages of disease and are marked by different MRI biomarkers. Sci. Rep. 12, 1426 (2022).

    Article 

    Google Scholar 

  • Mul, K. et al. Quantitative muscle MRI and ultrasound for facioscapulohumeral muscular dystrophy: complementary imaging biomarkers. J. Neurol. 265, 2646–2655 (2018).

    Article 

    Google Scholar 

  • Lassche, S. et al. Correlation between quantitative MRI and muscle histopathology in muscle biopsies from healthy controls and patients with IBM, FSHD and OPMD. J. Neuromuscul. Dis. 7, 495–504 (2020).

    Article 

    Google Scholar 

  • Wong, C. J. et al. Longitudinal measures of RNA expression and disease activity in FSHD muscle biopsies. Hum. Mol. Genet. 29, 1030–1043 (2020).

    Article 
    CAS 

    Google Scholar 

  • Andersen, G. et al. MRI as outcome measure in facioscapulohumeral muscular dystrophy: 1-year follow-up of 45 patients. J. Neurol. 264, 438–447 (2017).

    Article 

    Google Scholar 

  • Fatehi, F. et al. Long-term follow-up of MRI changes in thigh muscles of patients with facioscapulohumeral dystrophy: a quantitative study. PLoS One 12, e0183825 (2017).

    Article 

    Google Scholar 

  • Mul, K. et al. Adding quantitative muscle MRI to the FSHD clinical trial toolbox. Neurology 89, 2057–2065 (2017).

    Article 

    Google Scholar 

  • Frisullo, G. et al. CD8+ T cells in facioscapulohumeral muscular dystrophy patients with inflammatory features at muscle MRI. J. Clin. Immunol. 31, 155–166 (2011).

    Article 
    CAS 

    Google Scholar 

  • Tasca, G. et al. Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles. PLoS ONE 7, e38779 (2012).

    Article 
    CAS 

    Google Scholar 

  • Ferguson, M. R. et al. MRI change metrics of facioscapulohumeral muscular dystrophy: STIR and T1. Muscle Nerve 57, 905–912 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dahlqvist, J. R. et al. Relationship between muscle inflammation and fat replacement assessed by MRI in facioscapulohumeral muscular dystrophy. J. Neurol. 266, 1127–1135 (2019).

    Article 

    Google Scholar 

  • Friedman, S. D. et al. Longitudinal features of STIR bright signal in FSHD. Muscle Nerve 49, 257–260 (2014).

    Article 
    CAS 

    Google Scholar 

  • Janssen, B. H. et al. Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration. PLoS ONE 9, e85416 (2014).

    Article 

    Google Scholar 

  • Cohen, J., DeSimone, A., Lek, M. & Lek, A. Therapeutic approaches in facioscapulohumeral muscular dystrophy. Trends Mol. Med. 27, 123–137 (2020).

    Article 

    Google Scholar 

  • Kissel, J. T. et al. Randomized, double-blind, placebo-controlled trial of albuterol in facioscapulohumeral dystrophy. Neurology 57, 1434–1440 (2001).

    Article 
    CAS 

    Google Scholar 

  • van der Kooi, E. L. et al. Strength training and albuterol in facioscapulohumeral muscular dystrophy. Neurology 63, 702–708 (2004).

    Article 

    Google Scholar 

  • Campbell, A. E. et al. BET bromodomain inhibitors and agonists of the β2 adrenergic receptor identified in screens for compounds that inhibit DUX4 expression in FSHD muscle cells. Skelet. Muscle 7, 16 (2017).

    Article 

    Google Scholar 

  • Oliva, J. et al. Clinically advanced p38 inhibitors suppress DUX4 expression in cellular and animal models of facioscapulohumeral muscular dystrophy. J. Pharmacol. Exp. Ther. 370, 219–223 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rojas, L. A. et al. p38α regulates expression of DUX4 in a model of facioscapulohumeral muscular dystrophy. J. Pharmacol. Exp. Ther. 374, 489–498 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mellion, M. L. et al. Phase 1 clinical trial of losmapimod in facioscapulohumeral dystrophy: safety, tolerability, pharmacokinetics, and target engagement. Br. J. Clin. Pharmacol. 87, 4658–4669 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tawil, R. & Wagner, K. Clinical research: O.5 A phase 2, randomized, double-blind, placebo-controlled, 48-week study of the efficacy and safety of losmapimod in subjects with FSHD: ReDUX4. Neuromuscul. Disord. 31, S48–S49 (2021).

    Article 

    Google Scholar 

  • Jagannathan, S. et al. Meeting report: the 2021 FSHD International Research Congress. Skelet. Muscle 12, 1 (2022).

    Article 

    Google Scholar 

  • Wang, N., Wu, R., Tang, D. & Kang, R. The BET family in immunity and disease. Signal. Transduct. Target. Ther. 6, 23 (2021).

    Article 

    Google Scholar 

  • Yang, H., Wei, L., Xun, Y., Yang, A. & You, H. BRD4: an emerging prospective therapeutic target in glioma. Mol. Ther. Oncolyt. 21, 1–14 (2021).

    Article 

    Google Scholar 

  • Lim, J. W. et al. DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD. Hum. Mol. Genet. 24, 4817–4828 (2015).

    Article 
    CAS 

    Google Scholar 

  • Saad, N. Y. et al. Human miRNA miR-675 inhibits DUX4 expression and may be exploited as a potential treatment for facioscapulohumeral muscular dystrophy. Nat. Commun. 12, 7128 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kuijper, E. C., Bergsma, A. J., Pijnappel, W. W. M. P. & Aartsma-Rus, A. Opportunities and challenges for antisense oligonucleotide therapies. J. Inherit. Metab. Dis. 44, 72–87 (2021).

    Article 
    CAS 

    Google Scholar 

  • Marsollier, A. C. et al. Antisense targeting of 3ʹ end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach. Hum. Mol. Genet. 25, 1468–1478 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. C. et al. Morpholino-mediated knockdown of DUX4 toward facioscapulohumeral muscular dystrophy therapeutics. Mol. Ther. 24, 1405–1411 (2016).

    Article 

    Google Scholar 

  • Ansseau, E. et al. Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in faciosscapulohumeral muscular dystrophy (FSHD). Genes 8, 93 (2017).

    Article 

    Google Scholar 

  • Lu-Nguyen, N., Dickson, G., Malerba, A. & Popplewell, L. Long-term systemic treatment of a mouse model displaying chronic FSHD-like pathology with antisense therapeutics that inhibit DUX4 expression. Biomedicines 10, 1623 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lu-Nguyen, N., Malerba, A., Antoni Pineda, M., Dickson, G. & Popplewell, L. Improving molecular and histopathology in diaphragm muscle of the double transgenic ACTA1-MCM/FLExDUX4 mouse model of FSHD with systemic antisense therapy. Hum. Gene Ther. 33, 923–935 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lu-Nguyen, N., Malerba, A., Herath, S., Dickson, G. & Popplewell, L. Systemic antisense therapeutics inhibiting DUX4 expression ameliorates FSHD-like pathology in an FSHD mouse model. Hum. Mol. Genet. 30, 1398–1412 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bouwman, L. F. et al. Systemic delivery of a DUX4-targeting antisense oligonucleotide to treat facioscapulohumeral muscular dystrophy. Mol. Ther. Nucleic Acids 26, 813–827 (2021).

    Article 
    CAS 

    Google Scholar 

  • George, L. A. et al. Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B. Mol. Ther. 28, 2073–2082 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wallace, L. M. et al. RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol. Ther. 20, 1417–1423 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wallace, L. M. et al. Pre-clinical safety and off-target studies to support translation of AAV-mediated RNAi therapy for FSHD. Mol. Ther. Methods Clin. Dev. 8, 121–130 (2018).

    Article 
    CAS 

    Google Scholar 

  • Rashnonejad, A., Amini-Chermahini, G., Taylor, N. K., Wein, N. & Harper, S. Q. Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Mol. Ther. Nucleic Acids 23, 476–486 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bosnakovski, D. et al. A novel P300 inhibitor reverses DUX4-mediated global histone H3 hyperacetylation, target gene expression, and cell death. Sci. Adv. 5, eaaw7781 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mariot, V. et al. A deoxyribonucleic acid decoy trapping DUX4 for the treatment of facioscapulohumeral muscular dystrophy. Mol. Ther. Nucleic Acids 22, 1191–1199 (2020).

    Article 
    CAS 

    Google Scholar 

  • Klingler, C. et al. DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD. FASEB J. https://doi.org/10.1096/fj.201902696 (2020).

    Article 

    Google Scholar 

  • Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article 
    CAS 

    Google Scholar 

  • Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article 
    CAS 

    Google Scholar 

  • Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article 
    CAS 

    Google Scholar 

  • Himeda, C. L., Jones, T. I. & Jones, P. L. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol. Ther. 24, 527–535 (2016).

    Article 
    CAS 

    Google Scholar 

  • Joubert, R., Mariot, V., Charpentier, M., Concordet, J. P. & Dumonceaux, J. Gene editing targeting the DUX4 polyadenylation signal: a therapy for FSHD? J. Pers. Med. https://doi.org/10.3390/jpm11010007 (2020).

    Article 

    Google Scholar 

  • Das, S. & Chadwick, B. P. CRISPR mediated targeting of DUX4 distal regulatory element represses DUX4 target genes dysregulated in facioscapulohumeral muscular dystrophy. Sci. Rep. 11, 12598 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article 
    CAS 

    Google Scholar 

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article 
    CAS 

    Google Scholar 

  • Šikrová, D. et al. Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. Mol. Ther. Nucleic Acids 25, 342–354 (2021).

    Article 

    Google Scholar 

  • Himeda, C. L., Jones, T. I. & Jones, P. L. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Mol. Ther. Methods Clin. Dev. 20, 298–311 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tawil, R., Shaw, D. W., van der Maarel, S. M. & Tapscott, S. J. Clinical trial preparedness in facioscapulohumeral dystrophy: outcome measures and patient access: 8–9 April 2013, Leiden, The Netherlands. Neuromuscul. Disord. 24, 79–85 (2014).

    Article 
    CAS 

    Google Scholar 

  • The FSH-DY group. A prospective, quantitative study of the natural history of facioscapulohumeral muscular dystrophy (FSHD): implications for therapeutic trials. Neurology 48, 38–46 (1997).

    Article 

    Google Scholar 

  • Kinoshita, J., Magdinier, F. & Padberg, G. W. 26th Annual Facioscapulohumeral Dystrophy International Research Congress Marseille, France, 19–20 June 2019. Neuromuscul. Disord. 29, 811–817 (2019).

    Article 

    Google Scholar 

  • Mul, K. et al. 225th ENMC international workshop: a global FSHD registry framework, 18–20 November 2016, Heemskerk, The Netherlands. Neuromuscul. Disord. 27, 782–790 (2017).

    Article 

    Google Scholar 

  • Tassin, A. et al. FSHD myotubes with different phenotypes exhibit distinct proteomes. PLoS ONE 7, e51865 (2012).

    Article 
    CAS 

    Google Scholar 

  • Jones, T. I. et al. Transgenic mice expressing tunable levels of DUX4 develop characteristic facioscapulohumeral muscular dystrophy-like pathophysiology ranging in severity. Skelet. Muscle 10, 8 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jones, T. & Jones, P. L. A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy. PLoS One 13, e0192657 (2018).

    Article 

    Google Scholar 

  • Banerji, C. R. S. et al. PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nat. Commun. 8, 2152 (2017).

    Article 

    Google Scholar 

  • Bosnakovski, D. et al. An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO J. 27, 2766–2779 (2008).

    Article 
    CAS 

    Google Scholar 

  • Banerji, C. R. S. & Zammit, P. S. PAX7 target gene repression is a superior FSHD biomarker than DUX4 target gene activation, associating with pathological severity and identifying FSHD at the single-cell level. Hum. Mol. Genet. 28, 2224–2236 (2019).

    Article 
    CAS 

    Google Scholar 

  • Banerji, C. R. S. PAX7 target gene repression associates with FSHD progression and pathology over one year. Hum. Mol. Genet. 29, 2124–2133 (2020).

    Article 
    CAS 

    Google Scholar 

  • Petek, L. M. et al.A cross sectional study of two independent cohorts identifies serum biomarkers for facioscapulohumeral muscular dystrophy (FSHD). Neuromuscul. Disord. 26, 405–413 (2016).

    Article 

    Google Scholar 

  • Statland, J., Donlin-Smith, C. M., Tapscott, S. J., van der Maarel, S. & Tawil, R. Multiplex screen of serum biomarkers in facioscapulohumeral muscular dystrophy. J. Neuromuscul. Dis. 1, 181–190 (2014).

    Article 

    Google Scholar 

  • Signorelli, M. et al. Evaluation of blood gene expression levels in facioscapulohumeral muscular dystrophy patients. Sci. Rep. 10, 17547 (2020).

    Article 
    CAS 

    Google Scholar 

  • Heier, C. R. et al. Multi-omics identifies circulating miRNA and protein biomarkers for facioscapulohumeral dystrophy. J. Pers. Med. 10, 236 (2020).

    Article 

    Google Scholar 

  • Corasolla Carregari, V. et al. Proteomics of muscle microdialysates identifies potential circulating biomarkers in facioscapulohumeral muscular dystrophy. Int. J. Mol. Sci. 22, 290 (2020).

    Article 

    Google Scholar 

  • Gros, M. et al. Identification of serum interleukin 6 levels as a disease severity biomarker in facioscapulohumeral muscular dystrophy. J. Neuromuscul. Dis. 9, 83–93 (2022).

    Article 

    Google Scholar 

  • Wong, C. J. et al. Elevated plasma complement components in facioscapulohumeral dystrophy. Hum. Mol. Genet. 31, 1821–1829 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nunes, A. M., Ramirez, M., Jones, T. I. & Jones, P. L. Identification of candidate miRNA biomarkers for facioscapulohumeral muscular dystrophy using DUX4-based mouse models. Dis. Model. Mech. 14, dmm049016 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tasca, G. et al. Magnetic resonance imaging in a large cohort of facioscapulohumeral muscular dystrophy patients: pattern refinement and implications for clinical trials. Ann. Neurol. 79, 854–864 (2016).

    Article 

    Google Scholar 

  • Regula, J. U. et al. Clinical muscle testing compared with whole-body magnetic resonance imaging in facio-scapulo-humeral muscular dystrophy. Clin. Neuroradiol. 26, 445–455 (2016).

    Article 
    CAS 

    Google Scholar 

  • Olsen, D. B., Gideon, P., Jeppesen, T. D. & Vissing, J. Leg muscle involvement in facioscapulohumeral muscular dystrophy assessed by MRI. J. Neurol. 253, 1437–1441 (2006).

    Article 

    Google Scholar 

  • Leung, D. G., Carrino, J. A., Wagner, K. R. & Jacobs, M. A. Whole-body magnetic resonance imaging evaluation of facioscapulohumeral muscular dystrophy. Muscle Nerve 52, 512–520 (2015).

    Article 

    Google Scholar 

  • Lareau-Trudel, E. et al. Muscle quantitative MR imaging and clustering analysis in patients with facioscapulohumeral muscular dystrophy type 1. PLoS ONE 10, e0132717 (2015).

    Article 

    Google Scholar 

  • Dahlqvist, J. R., Vissing, C. R., Thomsen, C. & Vissing, J. Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy. Neurology 83, 1178–1183 (2014).

    Article 

    Google Scholar 

  • Goselink, R. J. M. et al. Muscle ultrasound is a responsive biomarker in facioscapulohumeral dystrophy. Neurology 94, e1488–e1494 (2020).

    Article 
    CAS 

    Google Scholar 

  • Vera, K. A., McConville, M., Kyba, M. & Keller-Ross, M. L. Sarcopenic obesity in facioscapulohumeral muscular dystrophy. Front. Physiol. 11, 1008 (2020).

    Article 

    Google Scholar 

  • U.S. Food and Drug Administration. Guidance document: patient-reported outcome measures: use in medical product development to support labeling claims. Guidance for Industry (docket number FDA-2006-D-0362). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-reported-outcome-measures-use-medical-product-development-support-labeling-claims (2009).

  • European Medicines Agency. Appendix 2 to the guideline on the evaluation of anticancer medicinal products in man. The use of patient-reported outcome (PRO) measures in oncology studies (EMA/CHMP/292464/2014). https://www.ema.europa.eu/en/documents/other/appendix-2-guideline-evaluation-anticancer-medicinal-products-man_en.pdf (2016).

  • Mul, K., Horlings, C. G. C., Faber, C. G., van Engelen, B. G. M. & Merkies, I. S. J. Rasch analysis to evaluate the motor function measure for patients with facioscapulohumeral muscular dystrophy. Int. J. Rehabil. Res. 44, 38–44 (2020).

    Article 

    Google Scholar 

  • Eichinger, K. et al. Facioscapulohumeral muscular dystrophy functional composite outcome measure. Muscle Nerve 58, 72–78 (2018).

    Article 

    Google Scholar 

  • Han, J. J. et al. Reachable workspace reflects dynamometer-measured upper extremity strength in facioscapulohumeral muscular dystrophy. Muscle Nerve 52, 948–955 (2015).

    Article 

    Google Scholar 

  • Hatch, M. N. et al. Longitudinal study of upper extremity reachable workspace in fascioscapulohumeral muscular dystrophy. Neuromuscul. Disord. 29, 503–513 (2019).

    Article 

    Google Scholar 

  • Hatch, M. N., Kurillo, G., Chan, V. & Han, J. J. Motion sensor-acquired reachable workspace correlates with patient-reported upper extremity activities of daily living (ADL) function in facioscapulohumeral dystrophy. Muscle Nerve 63, 250–257 (2021).

    Article 

    Google Scholar 

  • Hamel, J. et al. Patient-reported symptoms in facioscapulohumeral muscular dystrophy (PRISM-FSHD). Neurology 93, e1180–e1192 (2019).

    Article 
    CAS 

    Google Scholar 



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Telegram Email
    Previous ArticleTeachers report anxiety as a common emotion they feel every day: How schools can promote employee health
    Next Article Adaptive Research Expands Clinical Programs, Appoints Perminder Bhatia, MD Head of Neurology
    brainwealthy_vws1ex
    • Website

    Related Posts

    Gardasil Injection Lawsuit Claims HPV Vaccine Caused Neurological and Autonomic Dysfunction

    February 2, 2023

    REGENXBIO’s Duchenne Therapy RGX-202 Clinical Trial Begins Patient Recruitment

    February 2, 2023

    Aducanumab for the treatment of Alzheimer’s disease

    February 2, 2023
    Add A Comment

    Leave A Reply Cancel Reply

    Top Posts

    Subscribe to Updates

    Get the latest sports news from SportsSite about soccer, football and tennis.

    This website provides information about Brain and other things. Keep Supporting Us With the Latest News and we Will Provide the Best Of Our To Makes You Updated All Around The World News. Keep Sporting US.

    Facebook Twitter Instagram Pinterest YouTube
    Top Insights

    Top UK Stocks to Watch: Capita Shares Rise as it Unveils

    January 15, 2021
    8.5

    Digital Euro Might Suck Away 8% of Banks’ Deposits

    January 12, 2021

    Oil Gains on OPEC Outlook That U.S. Growth Will Slow

    January 11, 2021
    Get Informed

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    © 2023 brainwealthy. Designed by brainwealthy.
    • Home
    • Contact us
    • DMCA
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.