Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. The Lancet 387, 1723–1731. https://doi.org/10.1016/s0140-6736(16)00163-x (2016).
Google Scholar
Song, C. G. et al. Stem cells: A promising candidate to treat neurological disorders. Neural Regen. Res 13, 1294–1304. https://doi.org/10.4103/1673-5374.235085 (2018).
Google Scholar
Stonesifer, C. et al. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog. Neurobiol. 158, 94–131. https://doi.org/10.1016/j.pneurobio.2017.07.004 (2017).
Google Scholar
Hristov, M., Erl, W. & Weber, P. C. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 23, 1185–1189. https://doi.org/10.1161/01.ATV.0000073832.49290.B5 (2003).
Google Scholar
Janic, B. et al. Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS One 5, e9173. https://doi.org/10.1371/journal.pone.0009173 (2010).
Google Scholar
Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967. https://doi.org/10.1126/science.275.5302.964 (1997).
Google Scholar
Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422–3427. https://doi.org/10.1073/pnas.97.7.3422 (2000).
Google Scholar
Timmermans, F. et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol. 27, 1572–1579. https://doi.org/10.1161/ATVBAHA.107.144972 (2007).
Google Scholar
Harraz, M., Jiao, C., Hanlon, H. D., Hartley, R. S. & Schatteman, G. C. CD34− blood-derived human endothelial cell progenitors. Stem Cells 19, 304–312. https://doi.org/10.1634/stemcells.19-4-304 (2001).
Google Scholar
Schmeisser, A. et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc. Res. 49, 671–680. https://doi.org/10.1016/s0008-6363(00)00270-4 (2001).
Google Scholar
Wara, A. K. et al. Bone marrow-derived CMPs and GMPs represent highly functional proangiogenic cells: Implications for ischemic cardiovascular disease. Blood 118, 6461–6464. https://doi.org/10.1182/blood-2011-06-363457 (2011).
Google Scholar
Medina, R. J. et al. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol. Med. 17, 1045–1055. https://doi.org/10.2119/molmed.2011.00129 (2011).
Google Scholar
Hu, X. et al. Microglial and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol. 11, 56–64. https://doi.org/10.1038/nrneurol.2014.207 (2015).
Google Scholar
Urbich, C. & Dimmeler, S. Endothelial progenitor cells: Characterization and role in vascular biology. Circ. Res. 95, 343–353. https://doi.org/10.1161/01.RES.0000137877.89448.78 (2004).
Google Scholar
Janic, B. & Arbab, A. S. Cord blood endothelial progenitor cells as therapeutic and imaging probes. Imaging Med. 4, 477–490. https://doi.org/10.2217/iim.12.35 (2012).
Google Scholar
Kanazawa, M. et al. Angiogenesis in the ischemic core: A potential treatment target?. J. Cereb. Blood Flow Metab. 39, 753–769. https://doi.org/10.1177/0271678X19834158 (2019).
Google Scholar
Yan, T. et al. Neurorestorative therapy of stroke in type 2 diabetes mellitus rats treated with human umbilical cord blood cells. Stroke 46, 2599–2606. https://doi.org/10.1161/STROKEAHA.115.009870 (2015).
Google Scholar
Huang, L. et al. Intraarterial transplantation of human umbilical cord blood mononuclear cells in hyperacute stroke improves vascular function. Stem Cell. Res. Ther. 8, 74. https://doi.org/10.1186/s13287-017-0529-y (2017).
Google Scholar
Hwang, S., Choi, J. & Kim, M. Combining human umbilical cord blood cells with erythropoietin enhances angiogenesis/neurogenesis and behavioral recovery after stroke. Front. Neurol. 10, 357. https://doi.org/10.3389/fneur.2019.00357 (2019).
Google Scholar
Chen, J. et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32, 2682–2688. https://doi.org/10.1161/hs1101.098367 (2001).
Google Scholar
Boltze, J. et al. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant. 21, 723–737. https://doi.org/10.3727/096368911X586783 (2012).
Google Scholar
Nystedt, J., Makinen, S., Laine, J. & Jolkkonen, J. Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol. Exp. (Wars.) 66, 293–300 (2006).
Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101. https://doi.org/10.1126/science.8066449 (1994).
Google Scholar
Hamaguchi, I. et al. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. Blood 93, 1549–1556. https://doi.org/10.1182/blood.V93.5.1549 (1999).
Google Scholar
Naito, H., Kidoya, H., Sakimoto, S., Wakabayashi, T. & Takakura, N. Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J. 31, 842–855. https://doi.org/10.1038/emboj.2011.465 (2012).
Google Scholar
Ingram, D. A. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752–2760. https://doi.org/10.1182/blood-2004-04-1396 (2004).
Google Scholar
Hur, J. et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 288–293. https://doi.org/10.1161/01.ATV.0000114236.77009.06 (2004).
Google Scholar
Case, J. et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp. Hematol. 35, 1109–1118. https://doi.org/10.1016/j.exphem.2007.04.002 (2007).
Google Scholar
Medina, R. J., O’Neill, C. L., Humphreys, M. W., Gardiner, T. A. & Stitt, A. W. Outgrowth endothelial cells: Characterization and their potential for reversing ischemic retinopathy. Invest. Ophthalmol. Vis. Sci. 51, 5906–5913. https://doi.org/10.1167/iovs.09-4951 (2010).
Google Scholar
Muraille, E., Leo, O. & Moser, M. TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism?. Front. Immunol. 5, 603. https://doi.org/10.3389/fimmu.2014.00603 (2014).
Google Scholar
Zacchigna, S. et al. Bone marrow cells recruited through the neuropilin-1 receptor promote arterial formation at the sites of adult neoangiogenesis in mice. J. Clin. Invest. 118, 2062–2075. https://doi.org/10.1172/JCI32832 (2008).
Google Scholar
Bertani, F. R. et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci. Rep. 7, 8965. https://doi.org/10.1038/s41598-017-08121-8 (2017).
Google Scholar
De Sousa, J. R., Da Costa Vasconcelos, P. F. & Quaresma, J. A. S. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect. Drug Resist. 12, 2589–2611. https://doi.org/10.2147/IDR.S208576 (2019).
Google Scholar
Cuartero, M. I. et al. N2 neutrophils, novel players in brain inflammation after stroke: Modulation by the PPARgamma agonist rosiglitazone. Stroke 44, 3498–3508. https://doi.org/10.1161/STROKEAHA.113.002470 (2013).
Google Scholar
Hayashi, T., Noshita, N., Sugawara, T. & Chan, P. H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 23, 166–180. https://doi.org/10.1097/01.WCB.0000041283.53351.CB (2003).
Google Scholar
Huang, Q. et al. The temporal expression patterns of fibronectin and its receptors-alpha5beta1 and alphavbeta3 integrins on blood vessels after cerebral ischemia. Restor. Neurol. Neurosci. 33, 493–507. https://doi.org/10.3233/RNN-140491 (2015).
Google Scholar
Yu, S. W., Friedman, B., Cheng, Q. & Lyden, P. D. Stroke-evoked angiogenesis results in a transient population of microvessels. J. Cereb. Blood Flow Metab. 27, 755–763. https://doi.org/10.1038/sj.jcbfm.9600378 (2007).
Google Scholar
Tang, Y. et al. Ischemia-induced angiogenesis is attenuated in aged rats. Aging Dis. 7, 326–335. https://doi.org/10.14336/AD.2015.1125 (2016).
Google Scholar
Taguchi, A. et al. Granulocyte colony-stimulating factor has a negative effect on stroke outcome in a murine model. Eur. J. Neurosci. 26, 126–133. https://doi.org/10.1111/j.1460-9568.2007.05640.x (2007).
Google Scholar
Taguchi, A. et al. A reproducible and simple model of permanent cerebral ischemia in CB-17 and SCID mice. J. Exp. Stroke Transl. Med. 3, 28–33. https://doi.org/10.6030/1939-067x-3.1.28 (2010).
Google Scholar
Yoder, M. C. Defining human endothelial progenitor cells. J. Thromb. Haemost. 7(Suppl 1), 49–52. https://doi.org/10.1111/j.1538-7836.2009.03407.x (2009).
Google Scholar
Medina, R. J. et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Transl. Med. 6, 1316–1320. https://doi.org/10.1002/sctm.16-0360 (2017).
Google Scholar
Yoon, C. H. et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: The role of angiogenic cytokines and matrix metalloproteinases. Circulation 112, 1618–1627. https://doi.org/10.1161/CIRCULATIONAHA.104.503433 (2005).
Google Scholar
Medina, R. J. et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med. Genomics 3, 18. https://doi.org/10.1186/1755-8794-3-18 (2010).
Google Scholar
Yoder, M. C. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801–1809. https://doi.org/10.1182/blood-2006-08-043471 (2007).
Google Scholar
Urbich, C. et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108, 2511–2516. https://doi.org/10.1161/01.CIR.0000096483.29777.50 (2003).
Google Scholar
Gammaitoni, L. et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 103, 4440–4448. https://doi.org/10.1182/blood-2003-09-3079 (2004).
Google Scholar
Murohara, T. et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest. 105, 1527–1536. https://doi.org/10.1172/JCI8296 (2000).
Google Scholar
Madlambayan, G. & Rogers, I. Umbilical cord-derived stem cells for tissue therapy: Current and future uses. Regen. Med. 1, 777–787. https://doi.org/10.2217/17460751.1.6.777 (2006).
Google Scholar
Ballen, K. K., Gluckman, E. & Broxmeyer, H. E. Umbilical cord blood transplantation: The first 25 years and beyond. Blood 122, 491–498. https://doi.org/10.1182/blood-2013-02-453175 (2013).
Google Scholar
Cohen, Y. & Nagler, A. Umbilical cord blood transplantation—How, when and for whom?. Blood Rev. 18, 167–179. https://doi.org/10.1016/s0268-960x(03)00064-x (2004).
Google Scholar
Riordan, N. H., Chan, K., Marleau, A. M. & Ichim, T. E. Cord blood in regenerative medicine: Do we need immune suppression?. J. Transl. Med. 5, 8. https://doi.org/10.1186/1479-5876-5-8 (2007).
Google Scholar
Kim, J. & Hematti, P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp. Hematol. 37, 1445–1453. https://doi.org/10.1016/j.exphem.2009.09.004 (2009).
Google Scholar
Cantu, D. A., Hematti, P. & Kao, W. J. Cell encapsulating biomaterial regulates mesenchymal stromal/stem cell differentiation and macrophage immunophenotype. Stem Cells Transl. Med. 1, 740–749. https://doi.org/10.5966/sctm.2012-0061 (2012).
Google Scholar
Selleri, S. et al. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget 7, 30193–30210. https://doi.org/10.18632/oncotarget.8623 (2016).
Google Scholar
Chamberlain, C. S. et al. Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells 37, 652–662. https://doi.org/10.1002/stem.2988 (2019).
Google Scholar
Gao, J. et al. Characterization of OP9 as authentic mesenchymal stem cell line. J. Genet. Genomics 37, 475–482. https://doi.org/10.1016/s1673-8527(09)60067-9 (2010).
Google Scholar
Choi, K. D., Vodyanik, M. A. & Slukvin, I. I. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J. Clin. Invest. 119, 2818–2829. https://doi.org/10.1172/JCI38591 (2009).
Google Scholar
Zentilin, L. et al. Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood 107, 3546–3554. https://doi.org/10.1182/blood-2005-08-3215 (2006).
Google Scholar
Carrer, A. et al. Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer Res. 72, 6371–6381. https://doi.org/10.1158/0008-5472.CAN-12-0762 (2012).
Google Scholar
Groppa, E. et al. VEGF dose regulates vascular stabilization through semaphorin3A and the neuropilin-1+ monocyte/TGF-beta1 paracrine axis. EMBO Mol. Med. 7, 1366–1384. https://doi.org/10.15252/emmm.201405003 (2015).
Google Scholar
Iskander, A. et al. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: Magnetic resonance imaging and histological findings. Stem Cells Transl. Med. 2, 703–714. https://doi.org/10.5966/sctm.2013-0066 (2013).
Google Scholar
Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950. https://doi.org/10.1038/nm.1999 (2009).
Google Scholar
Ou, Y. et al. Intravenous infusion of GDNF gene-modified human umbilical cord blood CD34+ cells protects against cerebral ischemic injury in spontaneously hypertensive rats. Brain Res. 1366, 217–225. https://doi.org/10.1016/j.brainres.2010.09.098 (2010).
Google Scholar
Cui, X. et al. Therapeutic benefit of treatment of stroke with simvastatin and human umbilical cord blood cells: Neurogenesis, synaptic plasticity, and axon growth. Cell Transplant. 21, 845–856. https://doi.org/10.3727/096368911X627417 (2012).
Google Scholar
Taguchi, A. et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 114, 330–338. https://doi.org/10.1172/JCI20622 (2004).
Google Scholar
Park, D. H. et al. Human umbilical cord blood cell grafts for brain ischemia. Cell Transplant. 18, 985–998. https://doi.org/10.3727/096368909X471279 (2009).
Google Scholar
Xia, Y. et al. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell. Res. Ther. 11, 313. https://doi.org/10.1186/s13287-020-01834-0 (2020).
Google Scholar
Hicks, C. et al. In vivo and in vitro characterization of the angiogenic effect of CTX0E03 human neural stem cells. Cell Transplant. 22, 1541–1552. https://doi.org/10.3727/096368912X657936 (2013).
Google Scholar
Huang, H., Huang, Q., Wang, F., Milner, R. & Li, L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of alpha5beta1 and alphaVbeta3 integrins. J. Neuroinflam. 13, 227. https://doi.org/10.1186/s12974-016-0697-1 (2016).
Google Scholar
Yoshida, Y. et al. Intravenous administration of human amniotic mesenchymal stem cells in the subacute phase of cerebral infarction in a mouse model ameliorates neurological disturbance by suppressing blood brain barrier disruption and apoptosis via immunomodulation. Cell Transplant. 30, 9636897211024184. https://doi.org/10.1177/09636897211024183 (2021).
Google Scholar
Winter, B. et al. Anxious and hyperactive phenotype following brief ischemic episodes in mice. Biol. Psychiatry 57, 1166–1175. https://doi.org/10.1016/j.biopsych.2005.02.010 (2005).
Google Scholar
Tatebayashi, K. et al. Adipose-derived stem cell therapy inhibits the deterioration of cerebral infarction by altering macrophage kinetics. Brain Res. 1712, 139–150. https://doi.org/10.1016/j.brainres.2019.01.037 (2019).
Google Scholar
Balkaya, M., Krober, J. M., Rex, A. & Endres, M. Assessing post-stroke behavior in mouse models of focal ischemia. J. Cereb. Blood Flow Metab. 33, 330–338. https://doi.org/10.1038/jcbfm.2012.185 (2013).
Google Scholar
Hazane, F., Krebs, M. O., Jay, T. M. & Le Pen, G. Behavioral perturbations after prenatal neurogenesis disturbance in female rat. Neurotox. Res. 15, 311–320. https://doi.org/10.1007/s12640-009-9035-z (2009).
Google Scholar
Stubley-Weatherly, L., Harding, J. W. & Wright, J. W. Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Res. 716, 29–38. https://doi.org/10.1016/0006-8993(95)01589-2 (1996).
Google Scholar
Can, A. et al. The mouse forced swim test. J. Vis. Exp. https://doi.org/10.3791/3638 (2012).
Google Scholar